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Abstract

This article investigates the proper existence conditions and uniqueness results for a class of
fuzzy fractional CaputoVolterra-Fredholm integro-differential equations (FFCV-FIDE)with ini-
tial conditions. The findings are based on Banach’s contraction principle and Schaefer’s fixed
point theorem. Furthermore, the solution to the posed problem is found using the Adomian de-
composition technique (ADT). We support the concept with several examples. The relationship
between the upper and lower reduced approximation of the fuzzy solutions was demonstrated
numerically and graphically using MATLAB.
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1 Introduction

Fuzzy logic is an approach to variable processing that allows for multiple possible truth values
to be processed through the same variable. Fuzzy logic attempts to solve problems with an open,
imprecise spectrum of data and heuristics that makes it possible to obtain an array of accurate
conclusions. Fuzzy logic is designed to solve problems by considering all available information
and making the best possible decision given the input [5, 6, 11].

The idea of fractional calculus (FC) dates back to the days of Leibniz and Newton. Since then,
a number ofmathematicians havemade contributions to the theoretical development of FC. Its ap-
plication to real-world issues has garnered a lot of attention in recent years [31, 33]. Themathemat-
ical modelling of systems and processes in the domains of porous media, aerodynamics, electro-
magnetic, physics, viscoelasticity, control theory, electro-chemistry, signal processing, chemistry,
and so on gives rise to fractional differential equations (FDEs)in many engineering and scientific
disciplines (see [29, 34] and the references therein). In recent years, FDEs have seen a substantial
theoretical development (see [7, 20, 27] and the references therein). Some mathematicians are
interested in solving problems involving integro-differential equations (IDEs). The existence and
uniqueness of solutions to fractional IDEs were examined in several studies [22, 23, 35]. However,
the majority of works deal with numerical analysis of fractional IDEs, or FDEs. The number of ap-
proaches for locating these approximations has increased recently. A few of these techniques are
the wavelet method [25, 37], homotopy analysis method [16, 17, 21], variational iteration method
[24, 32], ADT [18, 19], fractional differential transformmethod [10], collocationmethod [30], and
reproducing kernel method [26].

Many academics have developed the concept of fractional IDEs in recent years. Zadeh was the
first to identify the relationship between arithmetic operations and fuzzy numbers [9, 36]. Ad-
ditionally, they developed the idea of fuzzy function integration. The fuzzy mapping function
was also suggested by Cheng and Zadeh [28], Dubois and Prade [13], and others. Furthermore,
Dubois and Prade [14] provided a basic fuzzy calculus based on the extension idea. Numer-
ous techniques have been developed recently for solving fuzzy IDEs. Hamoud and Ghadle [15]
worked on FVIDEs, which they formulated and solved using the homotopy analysis approach and
variational iteration method. The residual power technique for FFCV-FIDE has been analyzed by
Ahmad et al. [6]; Abu Arqub [1] discussed the kernel technique for replicating results in fuzzy
Fredholm-Volterra integral equations; Alaroud et al. [8] worked on residual power series method
under the generalized H-differentiability. Abu Arqub et al. [3] looked at the fractional derivative
(FD) in the Atangana-Baleanu interpretation of fuzzy FDEs. Within the framework of FDCaputo-
Atangana-Baleanu, they have worked on FFCV-FIDE [2]. They took advantage of the adoption of
kernel functions. Adomian created the Approximation-Dynamic Technique (ADT), which has
been effectively applied to solve numerous nonlinear differential equations by employing approx-
imations that quickly converge to the intended solution in [4].

Motivated by the above works, in this study, we examine a new class of FFCV-FIDEs and
demonstrate the existence and uniqueness of solutions inside their specified domain. Addition-
ally, we will study the the approximation of solution of the following model by using ADT:

Dη Ξ̃(t, θ) =φ̃(t, θ) +B(t)ℑ(Ξ̃(t, θ)) +
∫ t

0

ϑ(t, λ)ℑ(Ξ̃(λ, θ))dλ

+

∫ T

0

ϑ1(t, λ)ℑ(Ξ̃(λ, θ))dλ,
(1)

and
Ξ̃(0, θ) = (θ − 1, 1− θ), (2)
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where t ∈ Ψ := (0, T ], ℑ(Ξ̃(t, θ)) is a nonlinear function and kernels ϑ(t, λ), ϑ1(t, λ) and φ̃(t, θ) are
sufficiently smooth functions on Ψ and furthermore, B(t) ̸= 0 on Ψ. β1, β2 ∈ R with β1 + β2 ̸= 0,

and β̃3 ∈ RΩ represents (θ − 1, 1− θ).

An outline of the paper’s structure is provided as follows. In Section 2, the fundamental con-
cepts, notations, lemmas, and theorems of fuzzy and fuzzy FC were reviewed. In Section 3, we
examine the existence and uniqueness of a solution of the givenmodel (1)-(2). In Section 4, the so-
lution approximation of the proposedmodel was tested using an ADT.Moreover, the convergence
analysis is shown. Numerical experiments and a concrete computing technique are presented in
Section 5.

2 Auxiliary results

The basic ideas of fuzzy calculus are defined in this part, and these definitions will be applied
to the problems and approximate solutions that are put forth.
Definition 2.1. [6] Ξ̃ : R → [0, 1] is mapping of a fuzzy number that satisfies: Ξ̃ is upper semi-continuous
on R; cl(supp Ξ̃) is compact; and Ξ̃ is normal, closure, and fuzzy convex set. The set of all fuzzy numbers
is represented by the symbol RΩ. For any x, v ∈ RΩ and k ∈ R, the addition and scalar multiplication are
described by (x⊕ v)θ = xθ ⊕ vθ, (k ⊙ x)θ =

[
kxθ, kx̄θ

]
.

Definition 2.2. [8] Let Ξ̃ is a fuzzy number in a parametric form Ξ̃ = (Ξ(θ), Ξ̄(θ)), it fulfills the following
characteristics:

• Ξ(θ) be a non decreasing, bounded, and right continuous function over θ ∈ [0, 1].

• Ξ̄(θ) be a non increasing, bounded, and left continuous function over θ ∈ [0, 1].

Ξ(θ) ≤ Ξ̄(θ) for θ ∈ [0, 1].

Definition 2.3. [6] The θ-level set of a fuzzy number Ξ̃ ∈ RΩ defined by [Ξ̃]θ is identified by

[Ξ̃]θ =

{
r ∈ R/Ξ̃(r) ≥ θ, if 0 < θ ≤ 1,

cl(supp Ξ̃), if θ = 0.

The fuzzy number appears θ level set is a bounded and closed interval [Ξ(θ), Ξ̄(θ)], where Ξ(θ) is the left
side end point and Ξ̄(θ) is the right side end point.

Definition 2.4. [11] The extended Hukuhara derivative (eH-derivative) of fuzzy-valued function Ω̃ :
[x, y] → RΩ at c0 is expressed by

Ω̃′
eH (c0) = lim

h→0

Ω (c0 + h)⊖eH Ω (c0)

h
,

if
(
Ω̃′
)
eH

(c0) ∈ RΩ, we say that Ω̃ is extended Hukuhara differentiable (eH-differentiable) at c0. Further-

more, we say that Ω̃ is [(i)-eH]-differentiable at c0 if(
Ω̃′

eH

)
θ
(c0) =

[(
Ωθ

)′
(c0) ,

(
Ωθ

)′
(c0)

]
, 0 ≤ θ ≤ 1,

and that Ω̃ is [(ii)-eH]-differentiable at c0 if(
Ω̃′

eH

)
θ
(c0) =

[(
Ωθ

)′
(c0) ,

(
Ωθ

)′
(c0)

]
, 0 ≤ θ ≤ 1.

633



A. J. Abdulqader Malaysian J. Math. Sci. 18(3): 631–646 (2024) 631 - 646

Definition 2.5. [11] For a function Ω(t), the fractional integral (FI) of order η > 0 in the Riemann-
Liouville (R-L) sense is defined as follows:

IηΩ(u) =
1

Γ(η)

∫ u

0

(u− t)η−1Ω(t)dt, u > 0, η ∈ R,

I0Ω(u) = Ω(u).

Definition 2.6. [11] Based on its θ-level examples, the R-L FI of order η of the fuzzy function Ω̃(u, η)may
be expressed as follows: [

IηΩ̃(u; θ)
]
=
[
IηΩ(u; θ), IηΩ̄(u; θ)

]
,

where

IηΩ(u, θ) =
1

Γ(η)

∫ u

0

(u− t)η−1Ω(t, θ)dt, u > 0, η ∈ R,

IηΩ̄(u, θ) =
1

Γ(η)

∫ u

0

(u− t)η−1Ω̄(t, θ)dt, u > 0, η ∈ R.

Definition 2.7. [12] The order η Caputo FD is expressed in the following equation:

DηΩ(u) =


1

Γ(n− η)

∫ u

0

(u− t)n−η−1Ωn(t)dt, n− 1 ≤ η < n,

dn

dtn
Ω(u), η = n, n ∈ N.

The characteristics

• Iη1Iη2Ω(u) = Iη1+η2Ω(u), η1, η2 > 0,

• Iη1 (uη2) =
{

Γ(η2+1)u1+η2

Γ(η2+η1+1) , η2 > 0, η1 > −1, u > 0 .

Definition 2.8. [11] Based on its θ-level examples, the Caputo FD of order η of the fuzzy function Ω̃(u, θ)
may be expressed as follows: [

DηΩ̃(u; θ)
]
=
[
DηΩ(u; θ), DηΩ̄(u; θ)

]
,

where,

DηΩ(u, θ) =


1

Γ(m− η)

∫ u

0

(u− t)m−η−1Ωm(u, θ)dt, m− 1 ≤ η < m,

dm

dtm
Ω(u, θ), η = m,m ∈ N,

Dη[Ω̄(u, θ)] =


1

Γ(m− η)

∫ u

0

(u− t)m−η−1Ω̄m(u, θ)dt, m− 1 ≤ η < m,

dm

dtm
Ω̄(u, θ), η = m,m ∈ N.

Note Ω̃θ(t) be shown as Ω̃(t, θ).
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3 Existence and uniqueness results

We will discuss the existence and uniqueness results for for FFCV-FIDE (1) in this section. To
facilitate understanding, we have included a list of the theories that we will use to deepen our
discussion.

(H1) The functionℑ(Ξ̃(t, θ)) is satisfies the Lipschitz conditionwith respect to Ξ̃(t, θ), withL(> 0)
is Lipschitz constant, and ℑ(0) = 0, ∀ t ∈ Ψ.

(H2) The kernels ϑ(t, λ), ϑ1(t, λ) are bounded and continuous by Θ1 > 0 and Θ∗
1 > 0 on Ψ×Ψ.

(H3) The functions B(t) and φ̃(t, θ) are bounded by Θ2(> 0) and Θ3(> 0) respectively.

Theorem 3.1. The FFCV-FIDE (1)-(2) has a unique solution under the hypotheses (H1)-(H3), ∀ t ∈ Ψ,
if

(Θ2(η + 1) + Θ1 +Θ∗
1)L < Γ(η + 2),

is satisfied.

Proof. Applying Iη to both sides of (1) yields

Ξ̃(t, θ) =Ξ̃0 + Iηφ̃(t, θ) + Iη(B(t)ℑΞ̃(t, θ))

+ Iη

[∫ t

0

ϑ(t, λ)ℑ(Ξ̃(λ, θ))dλ+

∫ T

0

ϑ1(t, λ)1ℑ(Ξ̃(λ, θ))dλ

]
.

(3)

The above equation is now written as follows:

ΛΞ̃(t, θ) = Ξ̃(t, θ),

where the operator Λ is given as

ΛΞ̃(t, θ) =Ξ̃0 + Iηφ̃(t, θ) + Iη(B(t)ℑ(Ξ̃(t, θ)))

+ Iη

[∫ t

0

ϑ(t, λ)ℑ(Ξ̃(λ, θ))dλ+

∫ T

0

ϑ1(t, λ)1ℑ(Ξ̃(λ, θ))dλ

]
.
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Let Ξ̃1(t, θ), Ξ̃2(t, θ) ∈ C[0, T ]. Hence, ∀ t ∈ [0, T ], we get∣∣∣ΛΞ̃1(t, θ)− ΛΞ̃2(t, θ)
∣∣∣ ≤Iη

(
|B(t)|

∣∣∣ℑ(Ξ̃1(t, θ)
)
−ℑ

(
Ξ̃2(t, θ)

)∣∣∣)
+ Iη

[∫ t

0

|ϑ(t, λ)|
∣∣∣ℑ(Ξ̃1(λ, θ)

)
−ℑ

(
Ξ̃2(λ, θ)

)∣∣∣ dλ]
+ Iη

[∫ T

0

|ϑ1(t, λ)|
∣∣∣ℑ(Ξ̃1(λ, θ)

)
−ℑ

(
Ξ̃2(λ, θ)

)∣∣∣ dλ]

≤Θ2L

Γ(η)

∫ t

0

(t− λ)η−1
∣∣∣Ξ̃1(λ, θ)− Ξ̃2(λ, θ)

∣∣∣ dλ
+

Θ1L

Γ(η)

∫ t

0

(t− λ)η−1

[∫ λ

0

∣∣∣Ξ̃1(s, θ)− Ξ̃2(s, θ)
∣∣∣ ds] dλ

+
Θ∗

1L

Γ(η)

∫ t

0

(t− λ)η−1

[∫ T

0

∣∣∣Ξ̃1(s, θ)− Ξ̃2(s, θ)
∣∣∣ ds] dλ

≤
(
(Θ2(η + 1) + Θ1 +Θ∗

1)L

Γ(η + 2)

)∥∥∥Ξ̃1 − Ξ̃2

∥∥∥ .
This suggests ∥∥∥ΛΞ̃1(t, θ)− ΛΞ̃2(t, θ)

∥∥∥ ≤
(
(Θ2(η + 1) + Θ1 +Θ∗

1)L

Γ(η + 2)

)∥∥∥Ξ̃1 − Ξ̃2

∥∥∥ ,
where

∵ Υ :=
(Θ2(η + 1) + Θ1 +Θ∗

1)L

Γ(η + 2)
< 1. (4)

Be aware that the space (C[0, T ], ∥.∥) is a Banach space. Consequently, wemay infer that the FFCV-
FIDE (1)-(2) has a unique solution when using the Banach contraction principle.

Theorem 3.2. Let (H1)-(H3) contains true hypotheses. Furthermore, we consider that |ℑ(Ξ̃(t, θ))| ≤ Θ∗,
∀ t ∈ [0, T ] and Ξ̃(t, θ) ∈ RΩ. The FFCV-FIDE (1)-(2) has at least one solution in Ψ.

Proof. Let Φ : C ([0, T ],RΩ) → C ([0, T ],RΩ) be the operator defined by

Φ(Ξ̃(t, θ)) =
1

Γ(η)

∫ T

0

(T − λ)η−1
[
B(λ)ℑ(Ξ̃(λ, θ))

+

∫ λ

0

ϑ(λ, s)ℑ(Ξ̃(s, θ))ds+
∫ T

0

ϑ1(λ, s)ℑ(Ξ̃(s, θ))ds
]
dλ

+
1

Γ(η)

∫ t

0

(t− λ)η−1
[
B(λ)ℑ(Ξ̃(λ, θ)) +

∫ λ

0

ϑ(λ, s)ℑ(Ξ̃(s, θ))ds

+

∫ T

0

ϑ1(λ, s)ℑ(Ξ̃(s, θ))ds
]
dλ.

Here, we demonstrate the fixed point of the operator Φ by demonstrating that Φ is continuous
onC ([0, T ],RΩ) and compact on each bounded subset ofC ([0, T ],RΩ). This implies that the state-
ment in part one of Schaefer’s theorem is false, which in turn implies that part two of Schaefer’s
theorem must be true, as will be demonstrated through a series of steps.
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(i) Initially, we establish the continuity of the operator Φ. Let Ξ̃n be a sequence convergence to
Ξ̃ in C ([0, T ],RΩ) as n → ∞. ∀ Ξ̃n, Ξ̃ ∈ C ([0, T ],RΩ), for any t ∈ [0, T ], we get∣∣∣Φ(Ξ̃n(t, θ)

)
− Φ(Ξ̃(t, θ))

∣∣∣ ≤ 1

Γ(η)

∫ T

0

(T − λ)η−1
[
|B(λ)|

∣∣∣ℑ(Ξ̃n(λ, θ)
)
−ℑ(Ξ̃(λ, θ))

∣∣∣
+

∫ λ

0

|ϑ(λ, s)|
∣∣∣ℑ(Ξ̃n(s, θ)

)
−ℑ(Ξ̃(s, θ))

∣∣∣ ds
+

∫ T

0

|ϑ1(λ, s)|
∣∣∣ℑ(Ξ̃n(s, θ)

)
−ℑ(Ξ̃(s, θ))

∣∣∣ ds]dλ
+

1

Γ(η)

∫ t

0

(t− λ)η−1
[
|B(λ)|

∣∣∣ℑ(Ξ̃n(λ, θ)
)
−ℑ(Ξ̃(λ, θ))

∣∣∣
+

∫ λ

0

|ϑ(λ, s)|
∣∣∣ℑ(Ξ̃n(s, θ)

)
−ℑ(Ξ(s, θ))

∣∣∣ ds
+

∫ T

0

|ϑ1(λ, s)|
∣∣∣ℑ(Ξ̃n(s, θ)

)
−ℑ(Ξ(s, θ))

∣∣∣ ds]dλ
≤
(

Θ2LT
η

Γ(η + 1)
+

Θ1LT
η+1

Γ(η + 2)
+

Θ∗
1LT

η+1

Γ(η + 2)

)∥∥∥Ξ̃n − Ξ̃
∥∥∥

→ 0 as n → ∞.

Φ is implied to be continuous by this.
(ii) Next, we will demonstrate how C ([0, T ],RΩ) translates bounded set to itself using the op-

erator Φ, i.e., ∀ κ > 0,∃ a n > 0 and ∀ Ξ̃ ∈ Eκ, we get ∥Φ(Ξ̃)∥ ≤ n, and Eκ is defined by
Eκ =

{
Ξ̃ ∈ C ([0, T ],RΩ) : ∥Ξ̃∥ ≤ κ

}
, ∀ t ∈ [0, T ],

|Φ(Ξ̃(t, θ))| ≤ 1

Γ(η)

∫ T

0

(T − λ)η−1
[
|B(λ)||ℑ(Ξ̃(λ, θ))|

+

∫ λ

0

|ϑ(λ, s)||ℑ(Ξ̃(s, θ))|ds+
∫ T

0

|ϑ1(λ, s)||ℑ(Ξ̃(s, θ))|ds
]
dλ

+
1

Γ(η)

∫ t

0

(t− λ)η−1
[
|B(λ)||ℑ(Ξ̃(λ, θ))|

+

∫ λ

0

|ϑ(λ, s)||ℑ(Ξ̃(s, θ))|ds+
∫ T

0

|ϑ1(λ, s)||ℑ(Ξ̃(s, θ))|ds
]
dλ

≤
(
Θ2(η + 1) + (Θ1 +Θ∗

1)T

Γ(η + 2)

)
LT η∥Ξ̃∥

≤
(
Θ2(η + 1) + (Θ1 +Θ∗

1)T

Γ(η + 2)

)
κLT η.

By choosing n =
(

Θ2(η+1)+(Θ1+Θ∗
1)T

Γ(η+2)

)
κLT η , we have ∥Φ(Ξ̃(t, θ))∥ ≤ n. We get ∥ΦΞ̃∥ ≤ n,

the set Ek is implied to be confined by this.
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(iii) Φ operators bounded set into equi-continuous sets of C ([0, T ],RΩ). Let t1, t2 ∈ (0, T ] and
t1 < t2. ∀ Ξ̃ ∈ Eκ, we get∣∣∣Φ(Ξ̃ (t2, θ)

)
− Φ

(
Ξ̃ (t1, θ)

)∣∣∣ =∣∣∣ 1

Γ(η)

∫ t2

0

(t2 − λ)
η−1 ×

[
B(λ)ℑ(Ξ̃(λ, θ))

+

∫ λ

0

ϑ(λ, s)ℑ(Ξ̃(s, θ))ds+
∫ T

0

ϑ1(λ, s)ℑ(Ξ̃(s, θ))ds
]
dλ

− 1

Γ(η)

∫ t1

0

(t1 − λ)
η−1 ×

[
B(λ)ℑ(Ξ̃(λ, θ))

+

∫ λ

0

ϑ(λ, s)ℑ(Ξ̃(s, θ))ds+
∫ T

0

ϑ1(λ, s)ℑ(Ξ̃(s, θ))ds
]
dλ
∣∣∣

=
∣∣∣ 1

Γ(η)

∫ t1

0

(
(t2 − λ)

η−1 − (t1 − λ)
η−1
) [

B(λ)ℑ(Ξ̃(λ, θ))

+

∫ λ

0

ϑ(λ, s)ℑ(Ξ̃(s, θ))ds+
∫ T

0

ϑ1(λ, s)ℑ(Ξ̃(s, θ))ds
]
dλ

+
1

Γ(η)

∫ t2

t1

(t2 − λ)
η−1 ×

[
B(λ)ℑ(Ξ̃(λ, θ))

+

∫ λ

0

ϑ(λ, s)ℑ(Ξ̃(s, θ))ds+
∫ T

0

ϑ1(λ, s)ℑ(Ξ̃(s, θ))ds
]
dλ
∣∣∣

≤Θ2L∥Ξ̃∥
Γ(η + 1)

|2 (t2 − t1)
η
+ (tη1 − tη2)|+

Θ1L∥Ξ̃∥
Γ(η + 2)

∣∣∣2 (t2 − t1)
η+1

+
(
tη+1
1 − tη+1

2

) ∣∣∣+ Θ∗
1L∥Ξ̃∥

Γ(η + 2)

∣∣∣2 (t2 − t1)
η+1

+
(
tη+1
1 − tη+1

2

) ∣∣∣
−→ 0 as t1 −→ t2.

This illustrates how the operator converts C ([0, T ],RΩ) from a bounded set into an equicon-
tinuous set.

Consequently, the Arzela-Ascoli theorem states that operator Φ is compact. For the final stage,
let’s use the set ι, which is given by

ι =
{
Ξ̃ ∈ C ([0, T ],RΩ) : Ξ̃ = σΦ(Ξ̃) for 0 < σ < 1

}
.

Now that the prior set is bounded, we may demonstrate it. Assume that Ξ̃ ∈ ι and ∀ t ∈ [0, T ], we
get from

Ξ̃(t, θ) =σ
( 1

Γ(η)

∫ T

0

(T − λ)η−1
[
B(λ)ℑ(Ξ̃(λ, θ)) +

∫ λ

0

ϑ(λ, s)ℑ(Ξ̃(s, θ))ds

+

∫ T

0

ϑ1(λ, s)ℑ(Ξ̃(s, θ))ds
]
dλ+

1

Γ(η)

∫ t

0

(t− λ)η−1 ×
[
B(λ)ℑ(Ξ̃(λ, θ))

+

∫ λ

0

ϑ(λ, s)ℑ(Ξ̃(s, θ))ds+
∫ T

0

ϑ1(λ, s)ℑ(Ξ̃(s, θ))ds
]
dλ
)
.

Also, |φ̃(t, θ)| ≤ Θ3 from assumptions (H3), we get
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Then, ∀ t ∈ [0, T ], using |ℑ(Ξ̃(t, θ))| ≤ Θ∗, we have

|Ξ̃(t, θ)| =
∣∣∣σ( 1

Γ(η)

∫ T

0

(T − λ)η−1
[
B(λ)ℑ(Ξ̃(λ, θ)) +

∫ λ

0

ϑ(λ, s)ℑ(Ξ̃(s, θ))ds

+

∫ T

0

ϑ1(λ, s)ℑ(Ξ̃(s, θ))ds
]
dλ+

1

Γ(η)

∫ t

0

(t− λ)η−1 ×
[
B(λ)ℑ(Ξ̃(λ, θ))

+

∫ λ

0

ϑ(λ, s)ℑ(Ξ̃(s, θ))ds+
∫ T

0

ϑ1(λ, s)ℑ(Ξ̃(s, θ))ds
]
dλ
)∣∣∣

≤| 1

Γ(η)

∫ T

0

(T − λ)η−1
[
|B(λ)||ℑ(Ξ̃(λ, θ))|+

∫ λ

0

|ϑ(λ, s)||ℑ(Ξ̃(s, θ))|ds

+

∫ T

0

|ϑ1(λ, s)||ℑ(Ξ̃(s, θ))|ds
]
dλ+

1

Γ(η)

∫ t

0

(t− λ)η−1 ×
[
B(λ)||ℑ(Ξ̃(λ, θ))|

+

∫ λ

0

|ϑ(λ, s)||ℑ(Ξ̃(s, θ)) | ds+
∫ T

0

|ϑ1(λ, s)||ℑ(Ξ̃(s, θ)) | ds
]
dλ

≤
(
Θ2(η + 1) + (Θ1 +Θ∗

1)T

Γ(η + 2)
Θ∗T η

)
=n∗,

where n∗ =
(

Θ2(η+1)+(Θ1+Θ∗
1)T

Γ(η+2)

)
Θ∗T η . This establishes the boundedness of every Ξ̃ ∈ ι. The set

ι is hence limited. Additionally, Schaefer’s theorem establishes the existence of a fixed point for
theΦ. This indicates that there is at least one solution for the FFCV-FIDE (1)-(2), ∀ t ∈ [0, T ], Ξ̃(t).
Moreover, we can demonstrate that FFCV-FIDE (1)-(2) has a unique continuous solution on [0, T ]
by employing the assumptions in (H1)-(H3), and

(Θ2(η + 1) + (Θ1 +Θ∗
1)T )

Γ(η + 2)
LT η < 1,

is content. This may be inferred using the same method used to prove Theorem 3.1.

4 Methodology of ADT [4, 5]

This study demonstrates how to approximate the FFCV-FIDE solutions (1) using an ADT. Ex-
amine the FFCV-FIDE (1) that follows. The result of applying the Iη operator to both sides of the
FFCV-FIDE (1) is

Ξ̃(t, θ) = Ξ̃0 + Iη(φ̃(λ, θ)) + Iη(B(t)ℑΞ̃(t, θ))
)

+ Iη

[∫ t

0

ϑ(t, λ)ℑ(Ξ̃(λ, θ))dλ+

∫ T

0

ϑ1(t, λ)ℑ(Ξ̃(λ, θ))dλ

]
.

ADT describes the solution Ξ̃(t, θ) as a series:

Ξ̃(t, θ) =

∞∑
i=0

Ξ̃i(t, θ), (5)

and the nonlinear term M1 are broken down as

M1 =

∞∑
i=0

Pi, (6)
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in which the Adomian polynomials Pi are supplied by

Pi =
1

i!

di

dvi

[
M1

( ∞∑
l=0

viΞ̃l

)]
v=0

.

Hence,
P0 = M1

(
Ξ̃0

)
,

P1 = Ξ̃1M
′
1

(
Ξ̃0

)
,

P2 = Ξ̃2M
′
1

(
Ξ̃0

)
+

1

2
Ξ̃2
1M

′′
1

(
Ξ̃0

)
,

...
The components Ξ̃0, Ξ̃2, Ξ̃2, ... be found iteratively by

Ξ̃0(t, θ) = Ξ̃0 + Iη(φ̃(λ, θ)),

Ξ̃1(t, θ) = Iη
(
B(t)Ξ̃0(t, θ)

))
+ Iη

[∫ t

0
ϑ(t, λ)P0dλ+

∫ T

0
ϑ1(t, λ)P0dλ

]
,

...
Ξ̃k+1(t, θ) = Iη

(
B(t)Ξ̃k(t, θ)

))
+ Iη

[∫ t

0
ϑ(t, λ)Pkdλ+

∫ T

0
ϑ1(t, λ)Pkdλ

]
.

(7)

To approximate the IVP solution, we solve the aforementioned relation using the starting con-
dition. The primary prerequisites for (1) are distinguished by their significant role in formulating
the solution and their straightforward treatment of the recurrence connections. We construct this
Adomian equation in such away that the boundary condition is automatically satisfied by the final
solution. If the series (5) is convergent uniformly, we can approximate the solution of FFCV-FIDE
(1) by solving (7) and applying the initial condition, or by solving (7) and applying the initial
condition, respectively, and receiving theM terms

ΦM (t, θ) =

M−1∑
i=1

Ξ̃i(t, θ). (8)

4.1 Convergence analysis

This section describes the convergence of the approximate solution for FFCV-FIDE that was
previously discussed.

Theorem 4.1. Let’s assume that (H1)-(H3) are accurate. Take into consideration 0 < Υ < 1 as shown in
(4). Subsequently, the series (5) converges uniformly to the FFCV-FIDE’s solution Ξ̃(t, θ) in (1). Addi-
tionally, an approximate solution to Ξ̃(t, θ) is given by the partial sum (8).

Proof. Keep in mind that since φ̃(t, θ) ∈ C(Ψ), Ξ̃0(t, θ) ∈ C(Ψ). Thus, for any t ∈ Ψ, there exists
Θ ∈ R andΘ > 0 such that |Ξ̃0(t, θ)| ≤ Θ. We now demonstrate that the i-th term in the series (5)
meets the given requirement.

|Ξ̃i(t, θ)| ≤ ΘΥi on Ψ, (9)
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where Υwas given in (4). For i = 1, we get∣∣∣Ξ̃1(t, θ)
∣∣∣ =∣∣∣Iη[B(t)ℑ

(
Ξ̃0(t, θ)

)
+

∫ t

0

ϑ(t, λ)ℑ
(
Ξ̃0(λ, θ)

)
dλ

+

∫ T

0

ϑ1(t, λ)ℑ
(
Ξ̃0(λ, θ)

)
dλ
]∣∣∣

≤Θ2L
∣∣∣Ξ̃0(t, θ)

∣∣∣ Iη(1) + Θ1L
∣∣∣Ξ̃0(t, θ)

∣∣∣ Iη(t) + Θ∗
1L
∣∣∣Ξ̃0(t, θ)

∣∣∣ Iη(t)
=

Θ2L

Γ(η + 1)

∣∣∣Ξ̃0(t, θ)
∣∣∣ tη + Θ1L

Γ(η + 2)

∣∣∣Ξ̃0(t, θ)
∣∣∣ tη+1 +

Θ∗
1L

Γ(η + 2)

∣∣∣Ξ̃0(t, θ)
∣∣∣ tη+1

≤Υ
∣∣∣Ξ̃0(t, θ)

∣∣∣ ≤ ΘΥ.

(10)

Here, we consider (9) is true for i = k− 1, i.e., |Ξ̃k−1(t, θ)| ≤ ΘΥk−1. Proceeding in the same way
as previously, for i = k, we get∣∣∣Ξ̃k(t, θ)

∣∣∣ =∣∣∣Iη[B(t)ℑ
(
Ξ̃k−1(t, θ)

)
+

∫ t

0

ϑ(t, λ)ℑ
(
Ξ̃k−1(λ, θ)

)
dλ

+

∫ t

0

ϑ1(t, λ)ℑ
(
Ξ̃k−1(λ, θ)

)
dλ
]∣∣∣

≤Υ
∣∣∣Ξ̃k−1(t, θ)

∣∣∣
≤ΘΥk.

We find the required outcome at (9) as an answer. Consequently, for every t ∈ Ψ,
∞∑
i=0

∣∣∣Ξ̃i(t, θ)
∣∣∣ ≤ ∞∑

i=0

ΘΥi, (11)

where∑∞
i=0 ΘΥi is a convergent series for 0 < Υ < 1. Then, the∑∞

i=0 Ξ̃i(t, θ) is converges uni-
formly to theWeierstrassM-test. Therefore, again using theWeierstrassM-test. There is a uniform
convergence of the series (5) on. As a result, the partial sum in (8) approximates the answer to
(1).

5 An Example

Example 1. Consider the following FFCV-FIDE:D
1
2 Ξ̃(t, θ) = φ̃(t, θ) +B(t)Ξ̃(t, θ) +

∫ t

0

ϑ(t, λ)Ξ̃(λ, θ)dλ+

∫ 1

0

ϑ1(t, λ)Ξ̃(λ, θ)dλ, t ∈ (0, 1],

Ξ̃(0, θ) = (θ − 1, 1− θ),

and φ(t, θ) = 3t(θ − 1), φ̄(t, θ) = 3t(1 − θ), B(t) =
(−t3)
10 , ϑ(t, λ) = −3λt

10 and ϑ1(t, λ) =
−6λt
10 . The

above equation’s equivalent to

D
1
2Ξ(t, θ) = 3t(θ − 1)− t3

10
Ξ(t, θ)−

∫ t

0

3λt

10
Ξ(λ, θ)dλ−

∫ 1

0

6λt

10
Ξ(λ, θ)dλ,

Ξ(0, θ) = (θ − 1),

D
1
2 Ξ̄(t, θ) = 3t(θ − 1)− t3

10
Ξ̄(t, θ)−

∫ t

0

3λt

10
Ξ̄(λ, θ)dλ−

∫ 1

0

6λt

10
Ξ̄(λ, θ)dλ,

Ξ̄(0, θ) = (1− θ).
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Now let us construct Ξ(t, θ) and apply I
1
2 on both sides:

Ξ(t, θ) =Ξ(0, θ) + I1/2(φ(t, θ)) + I1/2(B(t)Ξ(t, θ)) + I1/2(ϑ(t, λ)Ξ(λ, θ)) + I1/2(ϑ1(t, λ)Ξ(λ, θ)),

Ξ(t, θ) =(θ − 1) + I1/2(3t(θ − 1)) + I1/2
(
−t3

10
(θ − 1)

)
+ I1/2

(
−3λt

10
(θ − 1)

)
+ I1/2

(
−6λt

10
(θ − 1)

)
.

We are now using the ADT:

Ξ0(t, θ) = Ξ(0, θ) + I1/2(3t(θ − 1)) = (θ − 1) +

(
3t3/2(θ − 1)

Γ(5/2)

)
,

Ξ1(t, θ) = I1/2

(
−
(
t3
)

10t
(θ − 1)

)
+ I1/2

(
−3λt

10
(θ − 1)

)
+ I1/2

(
−6λt

10
(θ − 1)

)
.

In a similar manner, we may locate consecutive words and obtain the answer:

Ξ =

∞∑
n=0

Ξn = (θ − 1) +

(
3t3/2(θ − 1)

Γ(5/2)

)
+

(
6t3/2(θ − 1)

Γ(5/2)

)
+ . . . .

Similarly, we may locate

Ξ =

∞∑
n=0

Ξn = (1− θ) +

(
3t3/2(θ − 1)

Γ(5/2)

)
+

(
6t3/2(θ − 1)

Γ(5/2)

)
+ . . . .

Figure 1 illustrates fuzzy approximate solutions to varying values of θ, while Figure 2 shows fuzzy
approximate solutions to varying values of θ and t.

Figure 1: Fuzzy approximate solutions to varying values of θ.
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Figure 2: Fuzzy approximate solutions to varying values of θ and t.

6 Conclusions

This article examines the fractional derivative in theCaputo sense for the class of fuzzyVolterra-
Fredholm integration equations of the first kind of fractional order. In this article, the initial value
problems are considered simultaneously. The transformation from the first type to the second
occurs according to Leibniz’s rule. The fixed point theory is used to establish the existence and
uniqueness of the equation under consideration in its second type. In addition, the Adomian de-
compositionmethod is used to determine the solution to the proposed problem. We provide some
examples to support the approach. MATLAB is used to display numerical and graphical represen-
tations of the symmetry between the top and bottom layer representations of the fuzzy solutions.
The obtained results have been validated by proving the appropriate problem. In the future, we
extend our work with delay terms.

Acknowledgement I would like to send my thanks to the reviewers for finding the time to read
and improve my work in the current manuscript.

Conflicts of Interest The author declares no conflict of interest.

References

[1] O. Abu Arqub (2017). Adaptation of reproducing kernel algorithm for solving fuzzy
Fredholm-Volterra integrodifferential equations.Neural Computing andApplications, 28, 1591–
1610. https://doi.org/10.1007/s00521-015-2110-x.

[2] O. Abu Arqub, J. Singh & M. Alhodaly (2023). Adaptation of kernel functions-based ap-
proach with Atangana-Baleanu-Caputo distributed order derivative for solutions of fuzzy

643

https://doi.org/10.1007/s00521-015-2110-x


A. J. Abdulqader Malaysian J. Math. Sci. 18(3): 631–646 (2024) 631 - 646

fractional Volterra and Fredholm integrodifferential equations. Mathematical Methods in the
Applied Sciences, 46(7), 7807–7834. https://doi.org/10.1002/mma.7228.

[3] O. Abu Arqub, J. Singh, B. Maayah & M. Alhodaly (2023). Reproducing kernel approach
for numerical solutions of fuzzy fractional initial value problems under the Mittag-Leffler
kernel differential operator. Mathematical Methods in the Applied Sciences, 46(7), 7965–7986.
https://doi.org/10.1142/2895.

[4] G. Adomian (1994). Solution of physical problems by decomposition. Computers & Mathe-
matics with Applications, 27(9-10), 145–154. https://doi.org/10.1016/0898-1221(94)90132-5.

[5] G. Adomian & R. Rach (1990). Equality of partial solutions in the decomposition method for
linear or nonlinear partial differential equations. Computers & Mathematics with Applications,
19(12), 9–12. https://doi.org/10.1016/0898-1221(90)90246-G.

[6] N. Ahmad, A. Ullah, A. Ullah, S. Ahmad, K. Shah & I. Ahmad (2021). On analysis of the
fuzzy fractional order Volterra-Fredholm integro-differential equation. Alexandria Engineer-
ing Journal, 60(1), 1827–1838. https://doi.org/10.1016/j.aej.2020.11.031.

[7] M. Al-Smadi & O. A. Arqub (2019). Computational algorithm for solving Fredholm time-
fractional partial integrodifferential equations of Dirichlet functions type with error esti-
mates. Applied Mathematics and Computation, 342, 280–294. https://doi.org/10.1016/j.amc.
2018.09.020.

[8] M. Alaroud, M. Al-Smadi, R. Rozita Ahmad &U. K. Salma Din (2019). An analytical numer-
ical method for solving fuzzy fractional Volterra integro-differential equations. Symmetry,
11(2), 205. https://doi.org/10.3390/sym11020205.

[9] M.Arfan, K. Shah, A. Ullah&T. Abdeljawad (2021). Study of fuzzy fractional order diffusion
problem under the Mittag-Leffler kernel law. Physica Scripta, 96(7), 074002. https://doi.org/
10.1155/2022/3864053.

[10] A. Arikoglu & I. Ozkol (2007). Solution of fractional differential equations by using differen-
tial transform method. Chaos, Solitons & Fractals, 34(5), 1473–1481. https://doi.org/10.1016/
j.chaos.2006.09.004.

[11] B. Bede & L. Stefanini (2013). Generalized differentiability of fuzzy-valued functions. Fuzzy
Sets and Systems, 230, 119–141. https://doi.org/10.1016/j.fss.2012.10.003.

[12] P. Das, S. Rana&H. Ramos (2022). On the approximate solutions of a class of fractional order
nonlinear Volterra integro-differential initial value problems and boundary value problems
of first kind and their convergence analysis. Journal of Computational and Applied Mathematics,
404, 113116. https://doi.org/10.1016/j.cam.2020.113116.

[13] D. Dubois & H. Prade (1978). Operations on fuzzy numbers. International Journal of Systems
Science, 9(6), 613–626. https://doi.org/10.1080/00207727808941724.

[14] D. Dubois & H. Prade (1982). Towards fuzzy differential calculus part 1: Integration of
fuzzy mappings. Fuzzy Sets and Systems, 8(1), 1–17. https://doi.org/10.1016/0165-0114(82)
90025-2.

[15] A. Hamoud & K. Ghadle (2018). The approximate solutions of fractional Volterra-Fredholm
integro-differential equations by using analytical techniques. Problemy Analiza Issues of Anal-
ysis, 7(25), 41–58. https://doi.org/10.15393/j3.art.2018.4350.

[16] A. A. Hamoud, A. Azeez & K. Ghadle (2018). A study of some iterative methods for solving
fuzzy Volterra-Fredholm integral equations. Indonesian Journal of Electrical Engineering and
Computer Science, 11(3), 1228–1235. https://doi.org/10.11591/ijeecs.v11.i3.pp1228-1235.

644

https://doi.org/10.1002/mma.7228
https://doi.org/10.1142/2895
https://doi.org/10.1016/0898-1221(94)90132-5
https://doi.org/10.1016/0898-1221(90)90246-G
https://doi.org/10.1016/j.aej.2020.11.031
https://doi.org/10.1016/j.amc.2018.09.020
https://doi.org/10.1016/j.amc.2018.09.020
https://doi.org/10.3390/sym11020205
https://doi.org/10.1155/2022/3864053
https://doi.org/10.1155/2022/3864053
https://doi.org/10.1016/j.chaos.2006.09.004
https://doi.org/10.1016/j.chaos.2006.09.004
https://doi.org/10.1016/j.fss.2012.10.003
https://doi.org/10.1016/j.cam.2020.113116
https://doi.org/10.1080/00207727808941724
https://doi.org/10.1016/0165-0114(82)90025-2
https://doi.org/10.1016/0165-0114(82)90025-2
https://doi.org/10.15393/j3.art.2018.4350
https://doi.org/10.11591/ijeecs.v11.i3.pp1228-1235


A. J. Abdulqader Malaysian J. Math. Sci. 18(3): 631–646 (2024) 631 - 646

[17] A. A. Hamoud & K. Ghadle (2018). Homotopy analysis method for the first order fuzzy
Volterra-Fredholm integro-differential equations. Indonesian Journal of Electrical Engineering
and Computer Science, 11(3), 857–867. https://doi.org/10.11591/ijeecs.v11.i3.pp857-867.

[18] A. A. Hamoud&K. P. Ghadle (2018). Modified Adomian decompositionmethod for solving
fuzzy Volterra-Fredholm integral equation. The Journal of the Indian Mathematical Society, 85,
53–69. https://doi.org/10.18311/jims/2018/16260.

[19] A. A.Hamoud&K. P. Ghadle (2018). Modified Laplace decompositionmethod for fractional
Volterra-Fredholm integro-differential equations. Journal of Mathematical Modeling, 6(1), 91–
104. https://doi.org/10.22124/JMM.2018.2826.

[20] A. A. Hamoud, M. S. H. B. Issa & K. P. Ghadle (2018). Existence and uniqueness results for
nonlinear Volterra-Fredholm integro differential equations. Nonlinear Functional Analysis and
Applications, 23(4), 797–805.

[21] A. A. Hamoud, S. A. M. Jameel, N. M. Mohammed, H. Emadifar, F. Parvaneh &M. Khademi
(2023). On controllability for fractional Volterra-Fredholm system. Nonlinear Functional Anal-
ysis and Applications, 28(2), 407–420. https://doi.org/10.22771/nfaa.2023.28.02.06.

[22] A. A. Hamoud, A. D. Khandagale, R. Shah & K. P. Ghadle (2023). Some new results
on Hadamard neutral fractional nonlinear Volterra-Fredholm integro-differential equations.
Discontinuity, Nonlinearity, and Complexity, 12(4), 893–903. https://doi.org/10.5890-DNC.
2023.

[23] K. H. Hussain, A. A. Hamoud & N. M. Mohammed (2019). Some new uniqueness results
for fractional integro-differential equations. Nonlinear Functional Analysis and Applications,
24(4), 827–836. https://doi.org/10.22771/nfaa.2019.24.04.13.

[24] M. B. Issa, A. Hamoud&K. Ghadle (2021). Numerical solutions of fuzzy integro-differential
equations of the second kind. Journal of Mathematics and Computer Science, 23, 67–74. http:
//dx.doi.org/10.22436/jmcs.023.01.07.

[25] K. Ivaz, I. Alasadi & A. Hamoud (2022). On the Hilfer fractional Volterra-Fredholm integro
differential equations. IAENG International Journal of Applied Mathematics, 52(2), 426–431.
http://doi.org/10.3934/Math.2017.2.365.

[26] W. Jiang& T. Tian (2015). Numerical solution of nonlinear Volterra integro-differential equa-
tions of fractional order by the reproducing kernel method. Applied Mathematical Modelling,
39(16), 4871–4876. https://doi.org/10.1016/j.apm.2015.03.053.

[27] O. Kaleva (1987). Fuzzy differential equations. Fuzzy Sets and Systems, 24(3), 301–317. https:
//doi.org/10.1016/0165-0114(87)90029-7.

[28] G. J. Klir & B. Yuan (1996). Fuzzy sets, fuzzy logic, and fuzzy systems: Selected papers by Lotfi A
Zadeh volume 6. World Scientific, Singapore. https://doi.org/10.1142/2895.

[29] P. Linz (1985). Analytical and numerical methods for Volterra equations. SIAM, Philadelphia.
https://doi.org/10.1137/1.9781611970852.

[30] X. Ma & C. Huang (2013). Numerical solution of fractional integro-differential equations
by a hybrid collocation method. Applied Mathematics and Computation, 219(12), 6750–6760.
https://doi.org/10.1016/j.amc.2012.12.072.

[31] K. S. Miller & B. Ross (1993). An introduction to the fractional calculus and fractional differential
equations. Wiley, New York.

645

https://doi.org/10.11591/ijeecs.v11.i3.pp857-867
https://doi.org/10.18311/jims/2018/16260
https://doi.org/10.22124/JMM.2018.2826
https://doi.org/10.22771/nfaa.2023.28.02.06
https://doi.org/10.5890-DNC.2023
https://doi.org/10.5890-DNC.2023
https://doi.org/10.22771/nfaa.2019.24.04.13
http://dx.doi.org/10.22436/jmcs.023.01.07
http://dx.doi.org/10.22436/jmcs.023.01.07
http://doi.org/10.3934/Math.2017.2.365
https://doi.org/10.1016/j.apm.2015.03.053
https://doi.org/10.1016/0165-0114(87)90029-7
https://doi.org/10.1016/0165-0114(87)90029-7
https://doi.org/10.1142/2895
https://doi.org/10.1137/1.9781611970852
https://doi.org/10.1016/j.amc.2012.12.072


A. J. Abdulqader Malaysian J. Math. Sci. 18(3): 631–646 (2024) 631 - 646

[32] M. Osman, Y. Xia, O. A. Omer & A. Hamoud (2022). On the fuzzy solution of linear-
nonlinear partial differential equations. Mathematics, 10(13), 2295. https://doi.org/10.3390/
math10132295.

[33] I. Podlubny (1999). Fractional differential equations, mathematics in science and engineering. Aca-
demic Press, New York.

[34] K. Sayevand (2015). Analytical treatment of Volterra integro-differential equations of frac-
tional order. Applied Mathematical Modelling, 39(15), 4330–4336. https://doi.org/10.1016/j.
apm.2014.12.024.

[35] M. R. M. Shabestari, R. Ezzati & T. Allahviranloo (2018). Numerical solution of fuzzy frac-
tional integro-differential equation via two-dimensional Legendre wavelet method. Journal
of Intelligent & Fuzzy Systems, 34(4), 2453–2465. https://doi.org/10.3233/JIFS-171707.

[36] A. Ullah, A. Ullah, S. Ahmad, M. U. Haq, K. Shah &N. Mlaiki (2022). Series type solution of
fuzzy fractional order Swift-Hohenberg equation by fuzzy hybrid Sumudu transform. Math-
ematical Problems in Engineering, 2022(1), 3864053. https://doi.org/10.1155/2022/3864053.

[37] L. Zhu & Q. Fan (2013). Numerical solution of nonlinear fractional-order Volterra integro-
differential equations by SCW. Communications in Nonlinear Science and Numerical Simulation,
18(5), 1203–1213. https://doi.org/10.1016/j.cnsns.2012.09.024.

646

https://doi.org/10.3390/math10132295
https://doi.org/10.3390/math10132295
https://doi.org/10.1016/j.apm.2014.12.024
https://doi.org/10.1016/j.apm.2014.12.024
https://doi.org/10.3233/JIFS-171707
https://doi.org/10.1155/2022/3864053
https://doi.org/10.1016/j.cnsns.2012.09.024

	Introduction
	Auxiliary results
	Existence and uniqueness results
	Methodology of ADT 34,39 
	Convergence analysis

	An Example
	Conclusions

